Руководства, Инструкции, Бланки

шурфование и отбор образцов грунта img-1

шурфование и отбор образцов грунта

Категория: Бланки/Образцы

Описание

Отбор грунтов

При проведении исследований физико-механических свойств грунтов, в зависимости от цели исследования выбирают вид пробы, а исходя из типа разведочной выработки – определяют способ отбора. Грунты могут быть отобраны с нарушенной или ненарушенной структурой.

Наиболее известные методы отбора проб, используемые при проведении инженерно-геологических изысканий – это точечный, валовый и бороздовый. При точечном методе отбирается один или несколько образцов грунта небольшого размера. Бороздовый метод заключается в том, что по всему пласту в крест его расположения вспахиваются борозды, которые и служат источником для взятия грунта. При валовом методе исследуется весь грунт, который добывается при выработки.

При проведении инженерно-геологических изысканий процесс изучения физико-механических свойств грунта необходим для:

- выделения всевозможных элементов геологического разреза (литологических слоев, пластов), а также в целях классификации пород грунта;

- расчета естественных и искусственных откосов при строительстве зданий;

- определения характеристик пород, которые впоследствии будут использоваться как строительные материалы.

Грунты с ненарушенной структурой (монолиты) используются чаще всего для проведения расчетов физико-механических свойств связных пород. Если необходимо исследование рыхлых (песчаных) пород, то вместо монолитов используются пробы грунта с нарушенной структурой. Однако в этом случае необходимо провести исследование с целью определения плотности грунтов в естественных местах залегания.

Отбор проб должен сопровождаться выполнением следующих правил:

- исследуемый материал должен не содержать случайных включений и полностью соответствовать тому слою почвы, с которого он был выбран;

- непосредственно после выборки, проба должна быть упакована, на нее должна быть наклеена этикетка установленного образца и все необходимые записи должны быть сделаны в журнал;

- после всех мероприятий по упаковке и регистрации необходимо доставить пробу в лабораторию или в иное место, где она может храниться до отправки ее в лабораторию.

Объем должен быть таким, чтобы была возможность провести все необходимые исследования. Так, объем проб с нарушенной структурой не должен быть меньше 2000 кв. см, для песчаных пород – от 1000 кв. см, для глинистых основ – от 500 кв. см.

После выборки монолит необходимо очистить и в целях сохранения структуры и естественной влажности – законсервировать. На практике обычно используют два способа для консервации – парафинирование и упаковка грунта в жесткую тару. При необходимости указывается верх тары и ориентировка по сторонам света.

При парафинировании используется смесь, которая делается из состава гудрона и парафина, разогретая до 65 градусов по Цельсию. Перевозят монолиты, упакованные с помощью парафинирования, в деревянных ящиках. Промежутки засыпаются опилками, чтобы в процессе транспортировки не повредить груз. При транспортировке необходимо обеспечить надежную защиту от воздействия внешних факторов (не допустить оттаивания мерзлых грунтов и замерзание талых пород).

При упаковке в жесткую тару образцы обматывают марлей, пропитанной парафином. После этого покрывают еще одним слоем жидкого парафина, обматывают в очередной раз марлей и завершают упаковку вновь покрытием парафином. Перед началом упаковки на образец прикрепляют этикетку, упакованную в кальку. Второй (дублирующий) экземпляр этикетки покрывают слоем парафина и крепят сверху на упаковку.

Видео

Другие статьи

Основные характеристики физических свойств грунтов, отбор образцов

Основные характеристики физических свойств грунтов, отбор образцов

Физические свойства грунтов характеризуют их физическое состояние в условиях природного (ненарушенного) залегания.

Исследование свойств грунтов предусматривает получение материала горных пород для определения показателей их физико-технических свойств – отбор проб.

Количество отобранного грунта должно быть таким, чтобы состав и свойства пробы соответствовали составу и свойствам опробуемого слоя. Чем более неоднороден грунт, тем больше должна быть проба. Ее размер должен соответствовать технологическим требованиям лабораторных исследований, а общая масса материала должна быть достаточной для всего комплекса лабораторных работ.

Отбираемые пробы могут быть с нарушенным или ненарушенным сложением (монолит ). Чем меньше нарушается структура грунта в процессе его отбора и на всем пути следования до лаборатории, тем больше будет достоверность показателей.

Пробы и монолиты отбирают из обнажений (мест выхода горных пород на земную поверхность) и из горных выработок (скважин, шурфов, штолен, траншей, расчисток и т. д.).

Поскольку при нарушении структурных связей грунта его свойства изменяются, желательно изучать состояние грунта при ненарушенной структуре.

Бурение скважин является основным видом разведочных работ при инженерно-геологических и гидрогеологических исследованиях.

Буровая скважина – это цилиндрическая вертикальная (иногда наклонная или горизонтальная) горная выработка малого диаметра, выполняемая буровым инструментом. Начальную точку скважины называют устьем, а конечную забоем. Образцы горных пород, извлекаемые из скважины, называют керном, если они представляют собой монолиты цилиндрической формы, или шламом, если порода раздроблена.

Диаметр скважин, используемых при инженерно-геологических изысканиях, обычно находится в пределах от 34 до 273 мм (для гидрогеологических целей – больше). Глубина скважин определяется задачами исследований и для инженерно-строительной целей редко превышает 30 м, а при поиске вод для водоснабжения может быть более 800 м.

К преимуществам бурения относят высокую скорость проходки, возможность достижения больших глубин, механизацию операций, мобильность установок. Недостатками метода являются невозможность осмотра стенок скважины, небольшой размер образцов, необходимость промывки скважины при бурении.

По окончании полевых работ из скважин извлекают инструмент и обсадные трубы, выработки тщательно цементируют, грунт утрамбовывают, а поверхность земли выравнивают.

Проходка шурфов осуществляется путем разрушения пород в забое горной выработки и извлечения их на поверхность Земли. При небольших объемах работ разрушение
малопрочных пород производят вручную. В других случаях возможно использование пневматических молотков и даже взрывчатых веществ. В настоящее время широко внедряется механизированный способ проходки шурфов круглого сечения – дудок – с помощью специальных шурфопроходческих установок.

Недостатком шурфов является высокая стоимость и трудоемкость работ, особенно в скальных горных породах. В малоустойчивых породах стенки шурфов приходиться крепить. При проходке водонасыщенных пород организуют водоотлив. По окончании полевых работ шурфы ликвидируют аналогично скважинам (засыпка, трамбование).

Из открытых горных выработок и обнажений монолиты вырезают в форме куба или параллелепипеда со сторонами не менее 100 мм и не более 250 мм с помощью ножа и лопаты (см. рис. 2.1). Шурфы позволяют детально изучить геолого-литологический разрез участка, отобрать любые по размеру образцы грунтов и проводить опытные полевые работы.

Консервация образцов. С целью сохранения естественной влажности, отобранные монолиты и пробы подлежат немедленной консервации способом парафинирования. Монолит или керн обматывают двумя слоями марли, крупнозернистые и пористые грунты заворачивают в полиэтилен.

Транспортировка проб. Нарушенные образцы отправляют в лабораторию в жестких обоймах (металлических или пластмассовых банках). Открытые грани образцов закрывают герметичными крышками, горловину банки парафинируют. Если не требуется сохранить влажность, образцы помещают в мешочки или в ящики, снабдив двумя этикетками.

Хранение проб. Образцы хранят при температуре не менее 2 ºС и не более 20 ºС при относительной влажности не более 80 %. Монолиты грунтов текучепластичной и
мягкопластичной консистенции хранят не более 45 дней со дня отбора до лабораторных испытаний. Образцы полутвердой и твердой консистенции можно хранить до 90 дней (при температуре выше 20 ºС – до 15 дней).

Рис. 2.1. Отбор монолитов грунта:
1 – стенки шурфа; 2 – останец; 3 – монолит; 4 – место среза; 5 – вырезанный монолит; 6 – контейнер

Подготовка проб к исследованию. Для непосредственной подготовки пробы к анализу ее сокращают методом квартования. Для этого из общей пробы воздушно-сухого грунта отбирают не менее 100 г мелко- и среднезернистых песков, не менее 400 г крупнозернистых песков и гравия, не менее 4 кг щебня и галечника. Грунт тщательно перемешивают и распределяют по ровной поверхности слоем около 0,5 см. Затем двумя взаимно перпендикулярными линиями разделяют на 4 равные части – квадранты. Два противоположных по диагонали квадранта оставляют в качестве сокращенной пробы, два других удаляют. Эти действия продолжают до тех пор, пока не остается необходимый объем грунта.

Показатели некоторых физических свойств грунтов могут определяться непосредственно в полевых условиях без отбора образцов с применением косвенных способов исследования, например, зондирования.

Также непосредственно в полевых условиях (визуально) можно предварительно определить вид грунта (табл. 2.1).

Определение вида грунта в полевых условиях (визуально)

Видны только песчаные частицы

Цементация отсутствует, сыпучий грунт

Наиболее приемлемыми для последующего использования в расчетах следует полагать показатели (характеристики) определений, произведенных для данных конкретных разновидностей грунтов.

Однако за неимением результатов таких определений можно воспользоваться результатами испытаний аналогичных грунтов, но достаточно близких к тем, которые залегают в основании сооружения. Можно иногда воспользоваться результатами, полученными в данной местности и в другое время ранее или, наконец, результатами других статистических обобщений. Все это зависит от важности, назначения и категории объекта.

Вследствие неоднородности любого рассматриваемого слоя грунта и ошибок при измерениях во время экспериментального определения характеристик грунта эти величины находят многократно, и полученные результаты обрабатывают методами математической статистики.

Минимально в математической статистике принято считать достаточным 6 определений. Однако чем большее количество результатов определений введено в формулу для статистического нахождения среднего значения, тем «точнее» оказывается результат.

Нормативными считаются средние значения показателей или характеристик, определяемые как среднеарифметические. Если характеристику обозначить через X.
а Xi – значение, полученное в одном из опытов, число которых n. то среднее значение будет . Чтобы использовать в расчете характеристику, следует найти ее расчетное значение , где γn – безразмерный коэффициент надежности. Для физических характеристик грунта коэффициент надежности часто принимается γn =1.

При переходе к расчетному значению учитывается, что среднее значение вследствие неоднородности грунта и ограниченного числа определений может содержать ошибку, которая должна быть исключена. Ошибки могут быть прямыми, связанными с применением неправильной методики определения, или плохой аппаратурой – это ошибки систематические. Для грунтов характерно свойство флуктуации, то есть случайных отклонений величин характеристик, которые характеризуют систему из большого числа элементов, от их среднего значения. Ошибки, точнее отскоки, могут быть большими. Такие ошибки называются грубыми, и эти величины исключаются из дальнейшего рассмотрения.

Ошибки ei величин, включаемых в рассматриваемую совокупность, из которой исключены большие случайные отскоки, устанавливаются как разности . Относительные ошибки вычисляются по формуле . Средние значения ошибок вычисляются либо как , либо как среднеквадратичные отклонения, равные .

При испытаниях следует выполнять требования соответствующих государственных стандартов, если они имеются, или различных ведомственных нормативных документов. Для испытаний используются стационарные, либо полевые лаборатории. Предпочтительными являются прямые методы испытаний, но в ряде случаев используются результаты косвенных методов исследования.

Все темы данного раздела:

МЕХАНИКА ГРУНТОВ
Учебное пособие для студентов высших учебных заведений, обучающихся по специальностям 27010265 «Промышленное и гражданское строительство» и 27010965 «Теплогазоснабжение и вентиляция

Пьянков, С. А. Азизов З. К.
П 87 Механика грунтов. учебное пособие / С. А. Пьянков, З. К. Азизов ; Ульян. гос. техн. ун-т. – Ульяновск. УлГТУ, 2008. – 97 с. ISBN 5-89146-700-0

Выписка из ГОС ВПО
ОПД.Ф.07 Механика грунтов: состав, строение и состояние грунтов; физико-механические свойства грунтов основания; распределение напряжений в грунтовом массиве; расчет о

Образование грунтов (генезис).
Континентальные отложения: · элювиальные (форма зерен угловатая); · делювиальные (перемещенные атмосферными водами и силами тяжести, напластования н

Структура, текстура и структурные связи грунта.
Следует различать структуру грунта, т. е. взаимное расположение частиц грунта и характер связи между ними и текстуру грунта, т. е. сложение грунта в массиве. Под структуро

Состав грунтов.
Грунты состоят из: твердых частиц; воды в различных видах и состояниях (в том числе льда при нулевой или отрицательной температуре грунта); газов (в том числе и воздуха). Вода и газы наход

Свойства твердых частиц.
Твердая минеральная масса состоит из первичных зерен скелета грунта (обломков горных пород и минералов) и вторичных частиц, служащих цементирующим веществом грунта. С

Свойства воды.
Свойства всех разновидностей грунтов, особенно песчаных, пылеватых и глинистых, самым существенным образом зависят от состава и содержания в них воды. В грунте различают кристаллизационную, или хим

Свойства газа.
Содержание воды и газа в грунте зависит от объема его пор: чем больше поры заполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена ат

Структурно-неустойчивые грунты
Структурно-неустойчивыми называют такие грунты, которые обладают способностью изменять свои структурные свойства под влиянием внешних воздействий с развитием значительных осадок, п

Мерзлые и вечномерзлые грунты.
Грунты всех видов относят к мерзлым грунтам, если они имеют отрицательную температуру и содержат в своем составе лед. Вечномерзлыми называют грунты, которые находятся в мерзлом состоянии н

Лёссовые грунты.
Лёссовые грунты по своей структуре и составу значительно отличаются от других видов грунтов. У лёссовых грунтов размер пор значительно превышает размер твердых частиц, такие грунты по-другому назыв

Слабые водонасыщенные грунты.
К слабым водонасыщенным грунтам относят илы, ленточные глины и другие виды глинистых грунтов, характерными особенностями которых являются их высокая пористость в природном состоянии, насыщенность в

Торфы и заторфованные грунты.
Торф – это органический грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных остатков. Состав болотных остатков в них – не менее 50%. Песчаные пылеват

Основные расчетные модели грунтов
Требования к расчетным моделям Точность прогнозов в механике грунтов в большой степени определяется тем, с какой полнотой в уравнениях состояния отражаются особенности деформирования грунт

Условия работы грунтов в массиве. Основные законы и свойства, механические характеристики
Механическими называются те свойства грунтов, которые характеризуют их поведение под нагрузкой. Под действием передаваемых сооружением вертикальных или наклонных сил в массиве основ

Физические представления
Так как грунт состоит из твердых частиц и пор, которые частично или полностью заполнены водой, теоретически при его сжатии должны уменьшаться объемы всех трех компонентов – твердых частиц, воздуха

В полевых условиях с помощью штампов.
Выполняя отбор проб для испытания грунтов, мы нарушаем его структуру и, следовательно, нарушаем его свойства. Поэтому производят полевые испытание грунта штампами: большого и малого диаметра.

Закон сопротивления сдвигу для различных грунтов, характерные зависимости. Угол внутреннего трения и угол естественного откоса, трение и сцепление
Сдвиг – процесс изменения расположения частиц грунта под действием внешних сил. Грунты в основании сооружений, а также при неодинаковых отметках их поверхности испытывают

Коэффициент фильтрации
Водопроницаемость связана с уплотнением грунта, так как при уплотнении из грунта в первую очередь извлекается влага. В строительстве фильтрационные свойс

Влияние подземных вод на строительные свойства грунтов и на фундаменты
На различной глубине от поверхности земли встречаются грунты, пропитанные водой. Эти воды называются грунтовыми, а верхняя поверхность их – уровнем грунтовых вод.

Влияние грунтовых вод на устойчивость и прочность основания
Изменение уровня грунтовых вод после возведения сооружения может резко понизить прочность основания и вызвать серьезные деформации сооружения в следующих случаях: · при наличии в грунте ле

Агрессивность грунтовых вод
Грунтовые воды, способные разрушать цементные бетоны и растворы, называются агрессивными. Агрессивность их зависит от химического состава растворенных в них солей и кислот. Эти вещества попа

Влияние физических и механических характеристик на строительные свойства грунтов
Характерные свойства грунтов длительное время воспринимать внешние нагрузки при деформациях оснований, не препятствующих нормальной эксплуатации зданий и сооружений, называют их строительными св

Фазы напряженно-деформированного состояния грунта
Фазы напряженно-деформированного состояния грунтаизучаются с целью установления расчетных моделей деформирования грунтового основания, приемлемых для инженерных расчетов его прочности, устойчивости

Определение напряжений в массиве грунта при действии единичной вертикальной силы N, приложенной к границе грунтового основания.
Решение задачи Буссинеска. Основано на следующих гипотезах (впоследствии подтвержденных точными решениями): а) нормальные напряжения на площадках, касательных к сферическо

Определение напряженийσzпри действии местного равномерно распределенного давления (метод угловых точек).
Если закон распределения давления по поверхности изотропного линейно-деформируемого полупространства известен, то элементарное суммирование можно заменить интегрированием.

Линейные и нелинейные деформации.
В общем случае грунтам свойственна нелинейная деформируемость, причем в пределах фаз I и II, в некотором начальном интервале изменения напряжений она достаточно близка к линейной.

Метод послойного суммирования
В большинстве практических случаев основание сложено по глубине разнородными грунтами, представленными в материалах инженерно-геологических изысканий инженерно-геологическими элементами (ИГЭ). Мето

Порядок расчета
1. Строим расчетную схему. 2. Разбиваем грунтовый массив ниже подошвы фундамента шириной b на элементарные слои, исходя из следующих условий: · мощность любого элементарног

Допущения при расчете по этому методу
1. Линейная зависимость между напряжениями и деформациями. 2. Осадки рассматриваются, исходя из maxPz – под центром фундамента. 3. Не учитывается, как правило, с

Затухание осадки во времени
Затухание осадки грунтов во времени (их консолидация) является сложным процессом, на который оказывают влияние водопроницаемость, структура, поровое давление, ползучесть скелета грунта, сжимаемость

Реология и нелинейная механика грунтов
Реология как наука, изучающая вопросы течения материалов, имеет три основных направления исследований: медленно развивающихся во времени деформаций – деформаций ползучести; расслабл

Длительная прочность грунта и релаксация напряжений
Если образец грунта подвергать деформациям сдвига, осевого сжатия или растяжения при различных нагрузках, то можно отметить, что чем большая нагрузка приложена к образцу, тем скорее наступает стади

Деформации ползучести грунта при уплотнении
Если деформацию образца водонасыщенного грунта в одометре или осадку слоя грунта без возможности бокового расширения изобразить во времени кривой в полулогарифмической системе координат, то она буд

Вопросы нелинейной механики грунтов
Ранее отмечалось, что близкая к линейной зависимость при небольших давлениях наблюдается в пределах фазы упругих деформаций и фазы уплотнения и местных сдвигов. Если давление по подошве жестких фун

Виды неравномерных осадок сооружений
Причины развития неравномерных осадок в сооружении. Равномерная осадка сооружений обычно никаких трудностей не вызывает. (Известны отечественные с

Причины развития неравномерных осадок выпирания
Данные осадки возникают за счет появления зон пластических деформаций оснований и выдавливания грунта в стороны (рис. 5.25). При давлении Р = R глубина зон п

Причины развития неравномерных осадок разуплотнения
Sразупл. – развивается под действием нагрузки, не превышающей величину природной, т. е. нагрузки, равной весу вынутого грунта при откопке котлована. Эт

Причины развития неравномерных осадок расструктуривания
Наибольшее влияние на развитие общих осадок могут оказать осадки расструктуривания, Sрасстр. вызванные нарушением структуры грунтов основания при отрывке котлованов и устройстве

Причины развития неравномерных осадок в период эксплуатации
1. Уплотнение грунтов после начала эксплуатации Sэкспл. сооружения: · деформации ползучести грунта и процесс фильтрационной консолидации;

Особенности деформирования различных типов грунтов
Особенности деформирования грунтов по-разному проявляются у различных видов грунтов и существенно зависят от состояния грунта и интенсивности действующих нагрузок. Монолитные ска

Мероприятия по повышению устойчивости сооружений, откосов и склонов
Первое основное направление – это уменьшение суммарных активных воздействий на сооружение, способных вызвать нарушение их устойчивости. Примерами таких мероприятий в рассмотренных на рис.

Общие положения.
Ограждающие конструкции предназначены для того, чтобы удерживать от обрушения находящийся за ними грунтовый массив. Характерным примером ограждающей конструкции является подпорная стенка – к

Определение активного давления на вертикальную гладкую стенку при горизонтальной поверхности засыпки.
Рассмотрим простейший случай, когда засыпка представлена идеально сыпучим грунтом (рис. 6.8). Поскольку принято, что стенка имеет абсолютно гладкую грань, т. е. трение грунта о стенку отсутствует (

Учет нагрузки на поверхности засыпки.
При наличии на поверхности сплошной равномерно распределенной нагрузки интенсивностью (рис. 6.9, а) выражение (6

Учет наклона, шероховатости задней грани стенки и наклона поверхности засыпки.
Этот случай является общим. Рассмотрим предельное равновесие призмы обрушения ОАВ согласно расчетной схеме, представленной на рис. 6.9, а. Здесь

Определение активного давления при ломаной форме грани стенки и неоднородных грунтах засыпки.
В этом случае стенка и грунты засыпки разделяются по горизонтали на отдельные участки, в пределах которых угол наклона стенки и физико-механические характеристики грунтов (

Определение пассивного давления.
Как указывалось выше, пассивное давление возникает при перемещении стенки в сторону грунта засыпки. Характерный пример такого случая показан на рис. 6.12, а. Под действием активного давления справа

ЗАКЛЮЧЕНИЕ
Механика грунтов – научная дисциплина, изучающая напряженно-деформированное состояние грунтов, условия их прочности, давление на ограждения, устойчивость грунтовых массивов и др. В механике грунтов

Хотите получать на электронную почту самые свежие новости?

Основания и фундаменты

Основания и фундаменты

Объем выполнения инженерно-геологических изысканий и обследований фундаментов определяется исходя из предполагаемого вида ремонта или реконструкции, технического состояния и характера деформаций конструктивных элементов (фундаментов, стен, столбов).

Случаи, когда необходимо выполнить инженерно-геологические изыскания, и примерный состав выполняемых работ приведены в табл. 6.3.

До начала выполнения земляных работ от соответствующих организаций в установленном порядке должно быть получено разрешение на отрывку шурфов и траншей.

Инженерные изыскания выполняются в соответствии с прилож. 1, п. 8, исходя из требований технического задания.

Состав, объем, методы и последовательность выполнения работ должны обосновываться в программе инженерных изысканий с учетом степени изученности и сложности природных условий.

В состав работ по исследованию подземных конструкций зданий необходимо включать: изучение имеющихся материалов по инженерно-геологическим исследованиям, проводившимся в данном районе или на соседних участках; изучение планировки и благоустройства участка, геологического строения, физико-геологических явлений, состояния существующих зданий и грунтовых вод; изучение материалов, относящихся к заложению фундаментов исследуемых зданий; бурение и шурфование исследуемых грунтов; лабораторное исследование грунтов оснований, а также изучение состояния искусственных свайных оснований и фундаментов.

Таблица 6.3. Инженерно-геологические изыскания и состав работ по оценке оснований и фундаментов

Характер предполагаемого ремонта или реконструкции, виды деформаций

Состав выполняемых работ по обследованию оснований и фундаментов

Определение конструктивных особенностей фундаментов, их технического состояния, геометрических размеров и глубины заложения при капитальном ремонте здания без замены перекрытий и без увеличения нагрузок

Реконструкция, модернизация или капитальный ремонт здания со сменой всех перекрытий, увеличением нагрузок на основание, возведением надстроек и пристроек, деформации стен, столбов и фундаментов

Детальное обследование оснований и фундаментов: выполнение контрольных шурфов, бурение скважин с отбором монолитов для лабораторного исследования. Лабораторные исследования грунтов с целью определения физико-механических характеристик, химический анализ воды, лабораторные исследования материалов фундаментов

Определение причин затопления подвалов и других подземных сооружение, углубление подвалов, появление сырости (увлажнение) ограждающих конструкций подвалов

Контрольные шурфы. Исследование грунтов бурением с определением уровня грунтовых вод. Проверка состояния и соблюдения инженерно-мелиоративных мероприятий, направленных на водопони-жение и осушение грунтов. Проверка наличия и состояния гидроизоляции, наблюдения за уровнем грунтовых вод

Количество контрольных шурфов в зависимости от цели обследования здания следует принимать по табл. 6.4.

Таблица 6.4. Количество шурфов при обследовании здания

Увеличение нагрузок, наличие дефектов, неравномерных осадок и т. п.

Контрольные шурфы отрывают в зависимости от местных условий с наружной или внутренней стороны фундаментов.

При детальном обследовании оснований и фундаментов необходимо также: определить тип фундаментов, их форму в плане, размер, глубину заложения, выявить выполненные ранее подводки усиления и другие устройства, а также ростверки и искусственные основания; исследовать прочность конструкции фундаментов с установлением размеров повреждений; отобрать пробы для лабораторных испытаний материалов фундаментов; установить состояние гидроизоляции, а также отобрать пробы грунта основания и грунтовой воды для лабораторного анализа.

Число отрываемых шурфов следует принимать в зависимости от размера здания в секциях (площадь секции составляет не более 400 м2):

При этом руководствуются следующими положениями о расположении шурфов:

  • в каждой секции по одному у каждого вида конструкции в наиболее нагруженном и ненагруженном участках;
  • при наличии зеркальных или повторяющихся (по плану и контурам) секций — в одной секции отрываются все шурфы, а в остальных — один-два в наиболее нагруженных местах;
  • в местах, где предполагаются установить дополнительные промежуточные опоры, в каждой секции отрывают по одному шурфу;
  • дополнительно отрывают для каждого строения два-три шурфа в наиболее нагруженных местах с противоположной стороны стены, там, где имеется выработка;
  • при наличии деформаций стен и фундаментов шурфы в этих местах отрывают в обязательном порядке, при этом в процессе работы назначаются дополнительные шурфы для определения границ слабых грунтов оснований или границ фундаментов, находящихся в неудовлетворительном состоянии; в случае свайного основания шурфы отрываются от свай.

Глубина шурфов, расположенных около фундаментов, не должна превышать глубины заложения подошвы больше чем на 0,5 м.

Обследование фундаментов зданий и сооружений предпочтительно осуществлять в летний период.

Минимальная площадь сечения шурфов в зависимости от глубины заложения фундамента составит:

Более 2,5. 2,5 и более

При значительной ширине фундаментов размер шурфа в плане можно увеличить. Длина обнажаемого ленточного фундамента должна быть не менее 1 м.

Оборудование, способы проходки и крепления выработок (скважин) инженерно-геологического назначения следует выбирать в зависимости от геологических особенностей и условий подъезда транспорта, наличия коммуникаций, стесненности площадки, свойств грунтов, поперечных размеров шурфов и глубины выработки.

Для исследования грунтов ниже подошвы фундаментов рекомендуется бурить скважину со дна шурфа.

Число разведочных выработок (скважин) должно устанавливаться заданием и программой инженерно-геологических работ.

В зависимости от количества секций число разведочных выработок (скважин) определяется:

Указанное число выработок может быть уменьшено при наличии материалов изысканий и для участков с простым геологическим строением.

Глубина заложения выработок скважин (А, м) определяется по формуле

где h1 — глубина заложения фундаментов от поверхности земли, м; ha — глубина активной зоны основания, м; с— постоянная величина, равная 2 м для зданий до трех этажей, 3 м — свыше трех этажей.

Глубина заложения выработок должна назначаться исходя из глубины активной зоны основания с учетом класса и конструктивных особенностей здания, а в сложных геологических условиях также глубиной термоактивной зоны, зоны набухания, зоны присадочных грунтов и т. д.

Физико-механические характеристики грунтов определяют по образцам, отбираемым в процессе обследования. Количество и размеры образцов грунта должны быть достаточными для проведения комплекса лабораторных испытаний.

Интервалы определения характеристик по глубине, число частных определений деформационных и прочностных характеристик грунтов должны быть достаточными для вычисления их нормативных и расчетных значений по СНиПу (прилож. 1, п. 8).

Отбор образцов грунта, их упаковка, хранение и транспортирование осуществляются в соответствии с прилож. 1, п. 98.

Измерение деформаций оснований зданий следует производить по прилож. 1, п. 78. Нивелирование, как правило, выполняют по маркам, допускается производить нивелирование по обрезам фундаментов (ленточных), частям фундамента, расположенного над планировочной отметкой (столбчатые и свайные), рандбалкам цокольного перекрытия в местах сопряжения их с фундаментами и в середине пролета.

Необходимость проведения контрольных изысканий устанавливается при изменениях привязки пристройки на генплане, конструкций по сравнению с заданием на проведение изыскательских работ; при обнаружении в процессе работ грунтов, не соответствующих указанным в заключении.

При обследовании деформированных зданий на просадочных грунтах основное внимание должно быть обращено на определение источника замачивания оснований.

Гидрогеологические скважины проходят с целью изучения фильтрационных свойств грунтов, поисков и определения характеристик подземных вод, режимных наблюдений за изменениями уровня грунтовых вод и др. В качестве гидрогеологических скважин допускается использовать пробуренные контрольные скважины.

Скважины бурятся в установленных визуально местах действия источника увлажнения. На расстоянии около 10 м от здания бурят контрольную скважину, влажность грунта из которой принимается за естественную. Пробы фунта для определения его влажности отбирают с каждого метра глубины скважины.

Ширину подошвы фундамента и глубину его заложения следует определять натурными обмерами. В наиболее нагруженных участках ширина подошвы определяется в двусторонних шурфах, в менее нагруженных допускается принимать симметричное развитие фундамента по размерам, определенным в одностороннем шурфе. Отметка заложения фундамента определяется нивелированием.

Обследование материалов фундаментов должно выполняться не-разрушающими методами или лабораторными испытаниями. Пробы материалов фундаментов для лабораторных испытаний отбирают в тех случаях, когда их прочность является решающей при определении возможности дополнительной нагрузки или в случае обнаружения разрушения материала фундамента.

Пробы допускается отбирать только из ленточных и сплошных фундаментов. В исключительных случаях допускается взятие проб из отдельных фундаментов на естественном основании и ростверков свайных фундаментов.

Отбор проб материала необходимо производить без снижения несущей способности фундаментов. Способы взятия и изготовления образцов должны обеспечивать неизменяемость структуры материала, его характеристик и связанных с этими факторами прочностных показателей исследуемого материала.

Для определения прочностных характеристик кирпичных фундаментов необходимо иметь не менее 10 шт. целых кирпичей (для пустотелого кирпича) или 10 шт. половинок полнотелого кирпича.

Образцы кирпича выбираются из разных мест тела фундамента. Отбор всего количества образцов из одного места не допускается во избежание нарушения несущей способности фундамента.

Одновременно с отбором кирпича из тела фундамента отбираются пробы раствора в количестве пяти штук для выпиливания и выклеивания из него кубиков размером 4x4x4 или 7x7x7 см.

Места отбора образцов сразу после отбора заделываются бетоном или хорошо обожженным кирпичом на цементном растворе.

Из бутовых фундаментов выбираются не менее пяти образцов камня с размерами сторон не менее 5 х 10 х 20 см. Образцы отбираются из разных мест с помощью кувалды и скарпеля с соблюдением правил техники безопасности.

При отборе образцов необходимо следить за сохранением прочности камня, так как при взятии отдельных камней возможно нарушение целостности как самих камней, так и кладки в целом.

После отбора образцов места отбора зачищают и заделывают бетоном на крупном заполнителе.

Пробы бетона при бетонных и бутобетонных фундаментах должны быть в виде кубов с размерами сторон не менее 7,07 см или кернов с диаметром не менее 7,14 см.

В связи с тем что извлеченные образцы имеют обычно неправильную форму, в дальнейшем необходимые формы и размеры им не придаются.

При бутобетонных фундаментах помимо пробы бетона берется проба бута, состоящая из пяти камней с размерами сторон не менее 5 х 10 х 20 см.

Количество образцов и мест исследования материалов свай следует принимать по табл. 6.5.

Таблица 6.5. Зависимость количества образцов от длины здания

Число секций в здании

Число образцов для испытания деревянных свай и ростверков

Отбор проб бетона свайных фундаментов следует осуществлять на расстоянии 5, 20, 50 и 80 см ниже поверхности грунта и в подполье на высоте 30 см от поверхности грунта.

Образцы древесины свайных столбов для определения влажности и микологического анализа следует брать ниже поверхности земли — на глубине 20 см, у поверхности земли — на глубине 0—10 см и выше уровня земли на 20—50 см.

Для лабораторных испытаний из материалов ленточных фундаментов отбирают не менее пяти образцов.

После окончания шурфования и бурения выработки должны быть тщательно засыпаны с послойным трамбованием и восстановлением покрытия. Во время рытья шурфов и обследования необходимо принимать меры, предотвращающие попадание в шурфы поверхностных вод.

Результаты инженерно-геологических изысканий должны содержать данные, установленные СНиПом (прилож. 1, п. 8), и необходимые для решения вопросов: определения свойств грунтов оснований для возможности надстройки дополнительных этажей, устройства подвалов и т. п.; выявления причин деформаций и определения мероприятий по усилению оснований, фундаментов, других надфунда-ментных конструкций; выбора типа гидроизоляции подземных конструкций, подвальных помещений; установления вида объема гидромелиоративных мероприятий на площадке.

Материалы инженерно-геологического обследования должны представляться в виде геолого-литологического разреза основания. Классификация грунтов проводится по прилож. 1, п. 91. Пласты грунтов должны иметь высотные привязки. В процессе выполнения обследования ведется рабочий журнал, содержащий все условия проходки, атмосферные условия, зарисовки конструкций фундаментов, размеры и расположение шурфов и т. д.

Результаты лабораторных исследований оформляются протоколами и заносятся в рабочий журнал.

п. 12 Обследование строительных конструкций зданий и сооружений

Сертификаты соответствия судебных экспертов серий 64АА № 0000274, 64АА № 0000270, 64АА № 0000499 удостоверяющие компетентность и соответствие требованиям добровольной сертификации «Консалтинг, аудит, экспертиза, оценка» по экспертной специальности 16.1: «Исследование строительных объектов и территории, функционально связанной с ними, в том числе с целью проведения их оценки»


Дипломы серии К №86244, КР №39914, 106305 0239684 о высшем профессиональном строительном образовании, квалификация - Инженер.